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Abstract-The problem OC the simultaneous development of the hydrodynamic and thermal fields in the 
entrance region of a circular pipe for a non-Newtonian Bingham-type fluid is solved numerically using the 
fully elliptic governing continuity, momentum and energy equations. A simultaneous variable solution 
technique for the system of finite difference equations is employed which has already been proven to 
efficiently and accurately predict Newtonian flows. Laminar flow and constant Ruid properties are assumed. 
The solutions obtained are for a wide range of Reynolds. Yield, Prandtl and Brinkman numbers and are 

compared with other existing solutions based on reduced forms of the governing equations. 

INTRODUCTION 

A LARGE number of the fluids used extensively in 
industrial applications are fluids exhibiting a yield 
stress ro, that is a stress that has to be exceeded before 
the fluid moves. As a result such fluids cannot sustain 
a velocity gradient unless the magnitude of the local 
shear stress is higher than this yield stress. Fluids that 
belong to this category include cement, drilling mud, 
sludge, grease, granular suspensions, aqueous foams, 
slurries, paints, food products, plastics and paper pulp. 
The rheological behavior of a significant number of 
these fluids can be described by the constitutive equa- 
tion for a Bingham plastic [I]. 

Given the wide occurrence of such flows, a detailed 
knowledge of their flow characteristics is of interest. 
The entrance flow problem in a circular pipe is of 
particular importance since it is encountered prac- 
tically in every piping system. The initial effort in 
solving the hydrodynamic problem for Bingham fluids 
employed the integral boundary layer technique to 
obtain approximate solutions, as typified by the solu- 
tions of Chen ef al. 121. The appearance of the digital 
computer allowed the employment of numerical solu- 
tions for the boundary layer equations that provided 
increased accuracy and resolution, as described by 
Soto and Shah [3]. The corresponding heat transfer 
problem has been solved only for the case of the 
hydrodynamically fully developed flow using the 
boundary layer formulation for the temperature field 
(Graetz problem), as described by Wissler and 
Schechter [4] and Blackwell [5]. In a recent paper, 
Johnston [6] solved the Graetz problem including 
axial conduction and concluded that the Peclet num- 
ber has to be greater than 1000 in order for the axial 
conduction term to be excluded without loss of accu- 
racy. Forrest and Wilkinson [7j have also solved the 
Graetz problem with the additional effect of tem- 
perature dependent plastic viscosity. No solution for 

the simultaneously developing hydrodynamic and 
temperature fields has been reported in the literature. 

The solution of the simultaneously developing 
hydrodynamic and temperature fields in the entrance 
region of a straight pipe for Newtonian fluids, as given 
by McDonald ef 01. [8] and Bentson and Vradis [9], 
shows that in the region close to the inlet of the pipe 
the boundry layer equations completely fail to predict 
the actual characteristics of the flow. While the bound- 
ary layer equations assume uniform pressure along 
each cross-section, the actual flow field exhibits strong 
transverse pressure gradients. In addition, close to the 
inlet a region of adverse pressure gradient exists. From 
these solutions, it is known that the full elliptic equa- 
tions are needed to predict accurately the flow charac- 
teristics in the inlet region. 

There are no results reported in the literature that 
employ the full elliptic equations for the solution of 
both the hydrodynamic and thermal entrance flow 
problem in a straight circular pipe for a Bingham 
fluid. In the present study a fully second-order accu- 
rate finite-difference formulation of the governing 
elliptic equations for mass conservation, momentum 
balance and energy conservation is used to solve this 
problem. A simultaneous variable solution technique 
is employed to solve the resulting system of non-linear 
equations which are linearized by employing an iter- 
ative marching solution procedure. The results 
obtained are compared with those obtained by the 
reduced forms of the governing equations. It is shown 
that substantial differences exist between these 
approximate solutions and the ones obtained in this 
study, and that the approximate solutions fail to pre- 
dict many important features of the flow field. 

THE GOVERNING EQUATIONS 

The non-dimensionalized governing equations for 
the two-dimensional, steady, laminar, incompressible 
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NOMENCLATURE 

Br Brinkman number, pU:/k(Ti- TW) 
G friction coefficient, ~,/pUf 
D, diameter of pipe 
h heat transfer coefficient based on bulk 

temperature 
k thermal conductivity 
NM Nusselt number, hD,/k 
Pr Prandtl number, q/a 
Pe Peclet number, Re Pr 

P non-dimensional pressure, P/pU,’ 
P pressure 
r non-dimensional radial distance, R/Rw 
i-0 non-dimensional ‘core’ radius, R,/R, 
R radial distance 
Rll radius of the ‘core’ 
RW radius of the pipe 
Re Reynolds number, pU,D,lq 
T temperature 
U non-dimensional streamwise velocity, 

(ll”i 

U streamwise velocity 
V non-dimensional radial velocity, V/Ui 

V radial velocity 
X non-dimensional streamwise distance, 

XIJL 
X streamwise distance 
Y Yield number, rORv,/qUi. 

Greek symbols 

i 
thermal diffusivity 
rate of deformation tensor, 
~~~ = au,/axj+ auj/ax, 

;I 
plastic viscosity 
non-dimensional temperature, 
CT- TwMT-- Tw) 

P effective viscosity 
pCrr non-dimensional effective viscosity, p/n 
P density 
7 stress tensor 
70 yield stress. 

Subscripts 
i inlet 
W wall. 

flow of a non-Newtonian fluid in cylindrical coor- 
dinates are : 7= q+ 

{ J(l,2;k: A)) 
A for (z:r)>2ri 

(1) A=0 for (7 : 7) < 24. 

au au ap 
u~+v;s;= -ax 

@a, b) 
Here A: A = 1 cAijAji is the second invariant of A. 

Equation (5a) iis ialid in the case of the shear stresses. 
Additional higher order terms which are a function of 
the corotational derivative of A and of the single dot 

a0 av ap 
upPjy= -5 

(2) product of A with itself, have to be added in equation 
(5a) to describe accurately the normal stresses. No 
systematic experimental and/or theoretical study of 
the importance of these higher order terms in describ- 
ing such flow fields exists. These higher order terms 
are neglected in the present study. In cylindrical coor- 
dinates the function 1/2(A: A) is given by 

where 

~=2[[~~+[ul’+[~1’]+[~+~~. definedas As a result the non-dimensional effective viscosity is 

(44 

In the case of a Bingham fluid the relationship k.n = 1-t 
J&: 4) 

for (7 : 7) > 27: (64 

between the stress tensor 7 and the rate of deformation 
tensor A is given by the following formula [I] : AK =CO for (7 : ?) < L&f, (6’3 
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where Y = rORw/qCJi is the Yield number for Bingham 
fluids. Equation (6) accurately expresses the effective 
viscosity associated with the shear stresses. However, 
because of the neglect of the higher order terms in 
equation @a), equation (6) expresses the normal 
stresses only in an approximate manner. 

THE SOLUTION TECHNIQUE 

The numerical technique used in the present study 
is described in detail by Bentson and Vradis [9] and 
Vradis and VanNostrand [lo], and has been shown 
to be both accurate and computationally efficient for 
Newtonian flows. It employs the well-known stag- 
gered grid proposed by Welch et al. [ll] for the 
Marker and Cell method, in conjunction with a 
second-order accurate finite-differences formulation 
of the governing elliptic equations. The resulting sys- 
tem of non-linear algebraic equations is solved using 
an iterative procedure, in which the non-linearities are 
treated by using values from the previous iteration 
level (quasi-linearization). The effective viscosity is 
evaluated at the end of each iteration using the newly 
obtained velocity field. The linear algebraic equations 
are solved simultaneously along lines perpendicular 
to the main flow direction, marching from the inlet to 
the outlet of the pipe. The convergence parameter 
employed in the present analysis is the magnitude of 
the maximum residual in the difference equations. The 
discretization is made in such a way that the continuity 
equation is always satisfied to ‘machine accuracy’ at 
any stage of the solution procedure. Therefore, con- 
vergence is checked for the two momentum and energy 
equations and the iterative procedure is terminated 
when the residual in the non-dimensional equations 
become less than 104. 

As is obvious from the governing equations, the 
only possible coupling of the momentum equations 
with the energy equation is through the viscosity. In 
the case where the viscosity is independent of tem- 
perature (as it is assumed to be in the present study), 
the hydrodynamic problem is completely independent 
of the thermal one. As a result, the continuity and 
momentum equations are solved first, simultaneously. 
Once the velocity field has been obtained to the desired 
level of accuracy, the energy equation, which is linear, 
is solved for the temperature distribution. 

A 98 x 60 grid (in the axial and radial directions, 
respectively) was used which was non-uniform in the 
streamwise direction, increasing geometrically from 
the inlet to the outlet, and uniform in the transverse 
direction. The grids used in all cases gave grid inde- 
pendent solutions, with the exception of the first point 
downstream of the inlet where the predicted Nusselt 
number is extremely sensitive to the grid due to the 
mathematical singularity imposed by the boundary 
conditions at that point. 

As seen from equations (6a) and (6b) the effective 
viscosity peR attains an infinite value when A : A = 0. 
Large values of /It,, generate computational difficulties 

since the coefficient matrix is rendered very ‘stiff ‘, thus 
resulting in lack of convergence. Therefore, when the 
value of A : A drops below a certain level the effective 
viscosity P,~ is ‘frozen’ at a certain high value in order 
to guarantee convergence. Different levels of upper 
values for the effective viscosity were investigated for 
their accuracy and computational efficiency. The 
results were shown to be quite insensitive of this high 
cut off value once it exceeded a value of about 500. A 
value of 1000 was adopted. This, in conjunction with 
a strong under-relaxation of the viscosity coefficient 
(of the order of S&99%, depending on the Yield 
number), proved to offer the best combination for 
numerical accuracy and computational efficiency. 

RESULTS 

The geometry and the boundary conditions of the 
problem are shown in Fig. 1. The flow at the inlet 
(X = 0) is assumed to be uniform (U = 1, v = 0), as is 
the temperature (0 = 1). At the exit the flow is 
assumed fully developed, both hydrodynamically and 
thermally, allowing the streamwise derivatives of the 
velocities and the temperature to be set to zero, while 
the pressure remains uniform. It is always verified 
after every run that the downstream boundary was 
located far enough from the inlet so that the flow there 
was completely fully developed. The length of the 
computational domain depends on the Reynolds, 
Prandtl and Yield numbers and since it is not known 
a priori, it is adjusted according to the above. As an 
example, in the case of Re = 5, Pr = 0.1 and Y = 1, 
the length of the domain is 6 pipe diameters, while in 
the case of Re = 50, Pr = 10, Y = 1 the length is 13 
pipe diameters. Along the solid walls (r = 1) the vel- 
ocities satisfy the no-slip condition (u = v = 0), while 
the non-dimensional temperature vanishes (6 = 0). 

The convergence rate of the numerical scheme is 
strongly influenced by the Yield number Y. Figure 2 
shows the convergence history for the hydrodynamic 
problem for Re = 50 and a 98 x 60 grid for four 
different Yield numbers (Y = 0, 2, 5 and IO). For a 
fixed grid size and Reynolds number, the higher Yield 
number cases require a larger number of iterations for 
convergence to the same accuracy level. This is due to 
the increased ‘stiffness’ of the coefficient matrix as 
indicated previously. For the higher Yield numbers 
convergence is obtained only after using very strong 
under-relaxation of the effective viscosity (of the order 

~r_~, 

fJ=l e=o 

FIG. 1. Geometry and boundary conditions. 
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-- - Y = 0.0 
-.- Y=2.0 
- Y = 5.0 
--- Y=lO.O 

Number of Iterations 

FIG. 2. Convergence history for dilferent Yield numbers (98 x 60 grid). 

of 9599%). In these cases the number of iterations 
required to reach the prescribed residual level of IO-“ 
was of the order of 4000-5000. Typically 20-30 iter- 

ations are required for the temperature solution to be 

obtained to the desired level of accuracy. A number 
of different acceleration schemes have been reported 
in the literature to increase the convergence rate of 
algorithms like the one employed in the present study. 
Their incorporation here would probably sub- 
stantially reduce the number of iterations required 
and are the subject of on-going research. 

The accuracy of the solution procedure is estab- 
lished by comparing the numerical results obtained 

for the velocity profile in the fully developed flow 
region with those predicted by the available exact 
analytical solution [ 121 of the governing equations in 
this region. The results for different values of Yield 

number are shown in Fig. 3. As seen, the numerical 
results are within less than 1% of the analytic solu- 
tions. The small deviations are due to the finite value 

assigned to the effective viscosity in the ‘core’ region 
(where the actual value of pcca = co) in order to 
guarantee convergence. The higher the upper limit 
value for the effective viscosity is, the smaller are the 
deviations between the two solutions. As expected, 
the fact that the effective viscosity in the core region 
is not infinite in the present calculation results in a 
core region with a non-perfectly uniform velocity dis- 
tribution. The velocity decreases slightly within this 
region as the radial distance increases. An interesting 
feature of this solution is the fact that the velocity 
gradient at the wall is much less sensitive than that at 
the centerline to the ‘cut off’ effective viscosity. This 
is highly desirable given that most of the phenomena 
of interest to engineering practice are boundary 
phenomena. 

Figures 4-6 show developing velocity profiles for 
Re = 50 and Y = 0, 2, 5 and IO, respectively, at 
different distances from the inlet. The velocity over- 
shoots present in the Newtonian flow solutions 

- - - Numerical 
- Analytical 
n Y=O 

0.6 

L 0.5 t 
t 

0.0 n ’ ’ ’ ’ ’ ’ ’ n ’ ’ ’ 
l,I, ,I,, ,\ 

0.0 0.2 0.4 0.6 0.6 1.0 1.2 1.4 1.6 1.6 2.0 

” 

FIG. 3. Fully developed velocity profiles. 
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FIG. 4. Developing velocity profiles for Re = 50, Y = 0, 2, 5 and IO at s = 0.27 
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FIG. 5. Developing velocity profiles for Re = 50, Y = 0, 2, 5 and IO at s = 1.98. 
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FIG. 6. Developing velocity profiles for Re = 50, Y = 0, 2, 5 and IO at x = 9.0. 
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(Y = 0) in the region close to the inlet are charac- 
teristic of fully elliptic solutions and not predicted by 
any reduced form of the equations such as partially 
parabolized Navier-Stokes or boundary layer for- 
mulations [9]. As seen in Figs. 4-6, the same over- 
shoots are present in the flow of non-Newtonian 
Bingham fluids. A common point of confusion in the 
analysis of flow behavior of Bingham fluids is the 
association of any point of inflection in the velocity 
profile (au/& = 0) with the presence of a ‘core’ flow 
region. Such association is valid only in pure shear 
flows, such as those that have been the subject of 
previous investigations [6, 71. In the flow situation 
encountered in the present study, the inflection point 
in the developing velocity profiles does not result in 
‘core’ flow regions. This is due to the non-zero value 
of the rest of the terms in equation (5~) which makes 
the value of A : A different than zero. As these figures 
demonstrate, the velocity overshoots are dampened 
by increasing Yield numbers eventually disappearing 
as plug flow (Y = co) is asymptotically approached. 
It is also noted that the velocity profiles develop faster 
with higher values of the Yield number. This is to be 
expected, given the increase of the core radius with 
the Yield number. 

The developing centerline velocity is given in Fig. 7 
for Re = 50 and Y = 0,2,5 and 10. In the region very 
near to the inlet, the centerline velocity develops faster 
for lower Yield numbers. After that, as the Yield 
number increases, the slope of the curve increases. 
Thus, the velocity develops faster and as a result the 
entrance length decreases as the Yield number 
increases. It should be mentioned here that if the 
maximum value of the effective viscosity employed 
is reduced below a certain limit, centerline velocity 
overshoots appear right before fully developed con- 
ditions are established. These overshoots become pro- 
found in the case of small upper limits for pea and 
cannot be eliminated through grid refinement. The 

results obtained in this study are compared to those 
of Chen et al. [2] who employed an integral boundary 
layer technique. As seen for the two cases compared 
(Y = 2 and 5) the solutions are fundamentally differ- 
ent. The boundary layer solutions, unable to predict 
the adverse pressure gradients present in the inlet 
region, allow for the rapid growth of the centerline 
velocity in that region. Consequently, the cor- 
responding high friction factors associated with the 
entrance region are severely under-predicted. 

Figure 8 shows the variation of the friction 
coefficient Cr along the pipe wall with streamwise dis- 
tance, again for Re = 50 and different Yield numbers. 
As expected, the entrance region is associated with 
friction coefficients substantially higher than those in 
the fully developed flow region. Throughout the pipe 
the friction coefficient increases with the Yield number 
due to increased velocity gradients along the pipe wall 
imposed on the flow by the increased size of the core 
region. Therefore, the corresponding friction factors 
are increasing with increasing Yield numbers. 

Figure 9 shows the effect of the Yield number on the 
streamwise Nusselt number distributions for Re = 50, 
Pr = 1 and Br = 0. In the fully developed region the 
Nusselt number increases with the Yield number due 
to the greater heat removal rate by the higher velocity 
gradients at the wall. It is very important to notice 
here that in the entrance region an increase in the 
Yield number results in a minimal increase in the 
corresponding Nusselt number. This behavior is simi- 
lar to that observed in the analytical solution of the 
boundary layer equations (Graetz problem) in ref. 
[5], where a hydrodynamically fully developed flow is 
assumed. In the present case however, the cor- 
responding Nusselt numbers at the inlet are higher 
than those in the Graetz problem given the higher 
velocity gradients at the wall associated with a hydro- 
dynamically developing flow. 

Figure 10 shows the Nusselt number variation with 

/*----- / / / 

0 Y = 2 (Chen et al) 
l Y = 5 (Chen et al) 

P.-‘-‘-‘- 

FIG. 7. Developing centerline velocity profiles for Re = 50. 



Entrance pipe flow and heat transfer for a Bingham plastic 549 

FIG. 8. Friction coefficient vs streamwise distance for Re = 50. 

--- Y = 0.0 
-‘- Y=2.0 
- Y = 5.0 

--- Y=lO.O 

FIG. 9. Nusselt number vs streamwise distance for Re = 50. Pr = 1 and Er = 0. 

- - - - P, = 0.1 
- .- P, = 1.0 
- P, = 10.0 

0 P, = O.l(Blackwell) 
l P, = l.O(Blackwell) 
0 P, = iO.O(Blackwell) 

FIG. 10. Nusselt number vs streamwise distance for Re = 50. Y = 2 and Br = 0. 
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streamwise distance for Re = 50, I’ = 2, Br = 0 and 
for Pr = 0.1, 1 .O and 10.0. As seen, higher Prandtl 
numbers are associated with higher inlet Nusselt num- 
bers and longer thermal entrance lengths, as the case 
with Newtonian fluids. The results obtained in this 
study are compared to those by Blackwell [5] where a 
hydrodynamically fully developed flow is assumed 
and the axial conduction terms are neglected. Very 
substantial quantitative differences exist between the 
two solutions in the entrance region, the results in ref. 
[5] giving much smaller values. Again, this is due to 
the assumption of hydrodynamically fully developed 
flow, which eliminates the entrance region with its 
sharp velocity gradients and corresponding higher 
heat transfer rates. For the low Prandtl number cases 
(Pr = 0. I) the differences close to the inlet are of one 
order of magnitude. In the fully developed flow region 
the two solutions are identical, as expected. 

Figure 11 shows the effect of the Reynolds number 
on the streamwise Nusselt number distribution for 
Pr = 1, Y = 2 and Br = 0. As expected, the higher the 

Reynolds number, the higher the Nusselt number at 
the inlet and the larger the thermal entrance length. 
As the fully developed flow condition is approached 
the Nusselt number asymptotically reaches the same 
value independently of the Reynolds number, since 
the fully developed velocity profile and the core size 
depend on the Yield number only. 

In the case of Newtonian fluids viscous heating 
effects are usually negligible, unless high speeds are 
present. The same cannot be said in the case of non- 
Newtonian fluids where such effects play a pre- 
dominant role in determining the heat transfer charac- 
teristics of the flow even at relatively low speeds. 
Again, in order to establish the accuracy of the 
numerical calculations once more, the effect of the 
Brinkman number on the heat transfer for a New- 
tonian fluid was studied and the numerical results 
were compared to the exact solution of the governing 
equations in the fully developed flow regime. The 
agreement was excellent. 

Figure 12 shows the effect of the Brinkman number 
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FIG. 12. Bulk temperature vs streamwise distance for Re = 50, Y = 5 and Pr = 1 
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FIG. 13. Nusselt number vs streamwise distance for Re = 50, Y = 5 and Pr = I 

on the bulk temperature for Re = 50, Y = 5 and 
Pr = 1. As seen, the effect is profound. Due to the 
dissipation of mechanical energy into heat the fluid 
temperature in the fully developed flow region is 
higher than that of the wall. In the fully developed 
flow regime the analytical solution for the temperature 
distribution can be obtained by integrating the 
governing equations. This solution has not been 
reported in the literature and so it is given here in the 
Appendix. The agreement between the analytical and 
computational results is excellent, the differences 
being not distinguishable on figures, therefore they are 
not presented here. As fully developed flow conditions 
are approached, the bulk temperature reaches its 
asymptotic value which is a linear function of the 
Brinkman number only. Notice that for a Brinkman 
number greater than about one the fluid is heated 
instead of cooled due to the excessive dissipation of 
mechanical energy to heat. 

Figure 13 shows the effect of the Brinkman number 
on the Nusselt number for Re = 50, Y = 5 and Pr = I. 
The Nusselt number in the thermally fully developed 
region (based on the bulk temperature) depends on 
the Yield number only and is independent of the 
Brinkman number. Again, the temperature gradients 
at the wall obtained from the analytical solution in 
the fully developed flow region were compared with 
the numerical results and the agreement is excellent. 
In the entrance region, as the Brinkman number 
increases the Nusselt number increases sharply, result- 
ing in order of magnitude differences in heat transfer 
rates. It is also noted here that the rate of decrease 
of the Nusselt number in the very near entry region 
decreases with increasing Brinkman numbers and that 
eventually at very high values of the Brinkman 
number, the Nusselt number actually increases, thus 
exhibiting a local maximum downstream of the inlet. 
There are two competing mechanisms here. One is the 
growth of the hydrodynamic and thermal boundary 
layers close to the inlet, which results in decreasing 

gradients at the wall and consequently lower Nusselt 
numbers. The second is the increase in the bulk tem- 
perature of the fluid due to the dissipation of mech- 
anical energy to heat, which results in increased tem- 
perature differences and consequently higher Nusselt 
numbers. As seen, for Br slightly above one the 
Nusselt profile at the inlet is very close to being flat, 
indicating that the two mechanisms in this case are 
practically balancing each other. Further downstream 
as the bulk temperature reaches its asymptotic value 
and the flow tends toward fully developed conditions, 
the Nusselt number drops to its asymptotic value. 

CONCLUSIONS 

The problem of the simultaneous development of 
the hydrodynamic and thermal fields in the entrance 
region of a straight circular pipe for the laminar flow 
of a non-Newtonian Bingham fluid has been solved 
numerically. A finite-difference second-order accurate 
scheme has been employed in conjunction with a 
marching iterative solution technique. To the authors’ 
best knowledge this is the first reported solution of 
elliptic Bingham fluid flows employing a finite-differ- 
ences scheme. The successful completion of this work 
indicates that such schemes, which are the most widely 
used ones in fluid flow and heat transfer calculations 
for Newtonian fluids, in conjunction with advanced 
solution techniques, can be adopted for the solution of 
complicated highly non-linear non-Newtonian flows 
with success. 

It has been shown that fully elliptic numerical solu- 
tions are required to accurately predict the flow field of 
non-Newtonian Bingham-type fluids in the entrance 
region. Such solutions have not been reported in the 
literature and are presented here. As is the case for 
Newtonian fluids, Bingham fluids exhibit velocity 
overshoots in the entrance region of the pipe, the 
overshoots diminishing with increasing Yield 
numbers. The present analysis has also demonstrated 
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the strong influence of the Yield number on the hydro- 
dynamic and heat transfer characteristics of this flow. 
One exception is the weak dependence of the Nusselt 
number in the entrance region on the Yield number. 
In addition, the effects of the Brinkman number are 
very important, resulting in Nusselt numbers with an 
order of magnitude higher than those in which viscous 
dissipation effects are neglected, even for moderate 
values of the Brinkman number. 
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APPENDIX 

The problem of the steady, fully developed, laminar flow 
in a circular pipe with viscous heating for a Bingham fluid 
has not been reported in the literature and for this reason it 
is given in this Appendix. 

In the case of a Bingham fluid, the non-dimensionalized 
governing equations describing the flow are 

I Y 
u=2;(1-r’)-Y(I-r) for r,drQ I (Ala) 

0 

u=if(l-r6,-Y(l-r,) for O<r<r, @lb) 
0 

and 
Id d0 
; z rz = -Brp,,@ = -Brp,, [ 1 du ’ [I dr 642) 

km=]+& for r,<r<l VW 

l&r = 03 for 0 < r Q rO. Wb) 
Integrating equation (A2) once, using equations (Al) and 
(A3), the temperature gradient is obtained as 

d0 -= -Br$ f-ro$ m&t;, 
dr [ 1 0 4 

(A4) 

The temperature gradient at the wall then is 

d0 L-1 dr y  
= Br$[-ri+4r,-31. (A5) 0 

For a Newtonian fluid (Y = 0), Y/r,, = 4, therefore 
[dO/dr], = -4Br. which is the exact solution in that case. 
Integrating equation (AS) over r. and settine 6 = 0 at the 
wallythe f&owingexpression is obtained for the temperature 
distribution : 

B(r)= Br &(I-r”)-;(I-r’)-zlnr 
0 0 1 

for r0 Q r < 1 (A64 

O(r) = B. = Br ;(I-&- 
cl 

;(I-r:)-Tlnr 
Cl 1 

for 0 < r < ra. Wb) 
In the case of a Newtonian fluid 6 = &, = Br, which is 

obtained for Y/r,, = 4 and which is the exact solution in that 
case. 


